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Figure 1 Numerical solution surface

stroyed by the noise that grows rapidly due to dynamical
instabilities of the explicit method.

Instabilities of numerical finite-difference methods
can be understood with an elementary application of the
discrete Fourier transform, which you may have studied
in Section 15.5. The linear superposition principle and
the discrete Fourier transform enable us to separate vari-
ables in a numerical finite-difference method and to
study individual time evolution (iterations) of each
Fourier mode of the numerical solution.

For simplicity, we shall consider the explicit finite-
difference method for the heat equation on the
interval 0 � x � a subject to the zero boundary condi-
tions at the end points x = 0 and x = a and a nonzero ini-
tial condition at the time level t = 0. The numerical
discretization leads to the explicit iteration scheme:

(1)

where is a numerical approximation of the solution
u(x, t) at the grid point and the time level 
while is the parameter of discretization. Let us
freeze the time level j � 0 and expand the nu-
merical vector defined on the
equally spaced grid i = 0, 1, . . . , n, where nh = a,
in the discrete Fourier sine-transform:

(2)

The boundary conditions are satisfied 
for any j � 0. Due to the linear superposition principle,
we shall consider each term of the sum in equation (2)
separately. Hence we substitute 

into the explicit method (1) and obtain

(3)

Using the trigonometric identity, 

the factor cancels out in equation (3), and we
obtain a simple iteration formula for 

where

(4)

Given that the factor is j-independent, it is clear the
amplitude of the Fourier mode changes in 
j � 0, according to the power of the factor 

The amplitude grows in j if , and it is bound-
ed or decaying if . Therefore, the stability of the�Ql� � 1
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Finite-difference methods for numerical solutions of par-
tial differential equations can be surprisingly inappropri-
ate for numerical approximations. The main problem
with finite-difference methods (especially with explicit
iteration schemes) is that they may magnify the numeri-
cal round-off noise due to intrinsic instabilities. Such in-
stabilities occur quite often in research work. An
engineer should be prepared for this situation. After he
or she spends many hours in development of a new nu-
merical method for modeling of an applied problem and
careful coding of the method with a computer language,
the computer program could then turn out to be useless
because of its dynamical instabilities.

Figure 1 illustrates a numerical solution of the heat
equation with an explicit finite-difference method, where
the time step k exceeds half of the squared step size h
(see Example 1 in Section 16.2). It is expected that a so-
lution of a heat equation for a rod of finite length with
zero temperatures at the end points should exhibit a
smooth decay of an initial heat distribution to the con-
stant level of zero temperatures. However, the surface in
Figure 1 shows that the expected smooth decay is de-
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explicit iteration method is defined from the constraint
that

(5)

Because the stability constraint (5)
can be rewritten as

(6)

which results in the conditional stability of the explicit
method for 0 < � ≤ 0.5. When � > 0.5, the first unstable
Fourier mode corresponds to l = n, which is responsible
for a pattern of time growing space-alternative sequence
of . This pattern called is clearly seen in Figure 1.

Thus instabilities of finite-difference methods can be
studied using the discrete Fourier transform, the linear
superposition principle, and the explicit time-iteration
factors. The same method can be applied to other finite-
difference methods for heat and wave equations, and in
general to a discretization of any linear partial differen-
tial equations with constant coefficients.

Related Problems
1. Consider the implicit Crank-Nicholson method for the

heat equation (see Example 2 in Section 16.2):

(7)

where and

Find the explicit formula for in Equation
(4) and prove that the implicit Crank-Nicholson method
(7) is unconditionally stable for any � > 0.

2. Consider the explicit central-difference method for the
heat equation :

(8)

Using the same algorithm as in Problem 1, reduce
Equation (8) to a two-step iteration scheme:

(9)al, j�1 � 4l 1  cos 1kl2 � 12al, j � al, j�1.

ui, j�1 � 2l 1ui�1, j � 2ui, j � ui�1, j 2 � ui, j�1.

ut � uxx

Qll � k>h2.

a � 2 11 � 1>l2 ,  b � 2 11 � 1>l2 ,
� bui, j � ui�1, j

� ui�1, j�1 � aui, j�1 � ui�1, j�1 � ui�1, j

ut � uxx

ui, j

1 � 4l sin2
 apl

2n
b � �1,     l � 1, 2, p , n

Ql � 1  for  l 7 0,

�Ql� � 1,     for all    l � 1, 2, p , n

Using the explicit iteration scheme (4), find a quadratic
equation for and solve it with the quadratic formula
(see Example 1 in Section 11.2). Prove that the explicit
central-difference method (8) is unconditionally unsta-
ble for any � > 0.

3. Consider the explicit central-difference method for the
wave equation (see Example 1 in Section
16.3):

(10)

where � = ck/h is the Courant number. Using the same
algorithm as in Problem 2, find and solve the quadratic
equation for . Prove that when both roots of
the quadratic equation are complex. Prove that the sta-
bility constraint (5) is violated when both roots of the
quadratic equation are distinct and real. Prove that the
explicit central-difference method (10) is stable for

and unstable for .

4. Consider the forward-time backward-space method for
the transport equation :

(11)

where � = ck/h. Consider the complex discrete Fourier
transform with the Fourier mode,

and find the complex-valued factor in the one-step
iteration scheme (4). Prove that the forward-time back-
ward-space method (11) is stable for 0 < � � 1 and un-
stable for � > 1.

5. Consider the backward-time central-space method for
the transport equation 

(12)

Using the same algorithm as in Problem 4, prove that
the backward-time central-space method (12) is uncon-
ditionally stable for any � > 0.

lui�1, j�1 � 2ui, j�1 � lui�1, j�1 � 2ui, j

ut � cux � 0:
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