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If you dip a wire frame into a soap solution and carefully remove it, 
you will find a soap film stretched across the wire. If the wire frame 
is planar, like the circular rings typically used to blow bubbles, 
then the soap film will be flat. Frames bent into more interesting 
shapes, however, yield more interesting surfaces.

A legendary figure in the study of such shapes was the Belgian 
physicist Joseph Plateau (1801–1883). Although blind (as a re-
sult of staring into the Sun for 25 seconds as an experiment in 
the physiology of vision), he directed an extensive series of 
experiments with soap films using a special solution of glycerin 
and soap of his own devising with which he could make soap 
films that could last for hours. Plateau also worked extensively 
with soap bubbles. (Through painstakingly careful observations, 
he was able to conjecture some beautifully simple principles 
governing the geometry of clusters of soap bubbles known as 
“Plateau’s rules.”)

Plateau realized that a soap film forms so as to minimize its 
energy due to surface tension or, equivalently, to minimize its 
surface area subject to the constraint that it spans the wire. He 
challenged mathematicians to give a general description of such 
area-minimizing surfaces, or minimal surfaces. As a consequence, 
the problem of determining the surface of least area constrained by 
a given boundary is known as “Plateau’s problem.”

At the time of Plateau, the mathematical study of minimal 
surfaces had already begun almost a century earlier with work 
by Leonhard Euler and Joseph Louis Lagrange. However, the 
mathematics necessary to resolve many of the conjectures and 
problems of Plateau did not develop until the twentieth century. 
Indeed, the study of minimal surfaces remains an active area of 
research today, and mathematicians still scramble to keep up 
with its applications and potential applications.

Applications abound in many of the physical and biological 
sciences. Much recent excitement centers on applications to nano-
technology in molecular engineering and materials science. Some 
very exotic minimal surfaces, only recently discovered mathemati-
cally, have been observed physically in “block copolymers,” mol-
ecules composed of two different polymer strands that repel each 
other. The molecules arrange themselves in such a way that the 
boundaries between the dissimilar parts form minimal surfaces. 
This case is a typical application in the sense that the interface 
between any two substances that repel each other tends to be, at 
least approximately, a minimal surface.

More esoteric applications include the general relativistic 
description of black holes. There are also applications in de-
sign. For example, engineers sometimes use minimal surfaces 
to design structures over which stress should be distributed as 
uniformly as possible to maximize durability. Finally, mini-
mal surfaces are aesthetically pleasing and are often used in 
architecture and art, including the sculptures of the well-known 
mathematician-artist Helaman Ferguson.* 

Let’s consider a simple version of Plateau’s  problem:

Let R be a closed and bounded region in the xy-plane 
bounded by a piecewise smooth simple closed curve C. Let 
z � g(x, y) be a given function defined on C. (The graph 
of g is our “wire frame.”) Among all functions z � u(x, y) 
having continuous second partial derivatives on R and such 
that u(x, y) � g(x, y) on C, characterize the one whose 
graph over R has the smallest possible surface area.

In our attempt to solve the foregoing problem, we begin 
with (2) in Definition 9.13.1 of the text. The surface area A of 
the graph of u over R is given by

  A1u2 5 6
R

21 1 fux1x, y2g2 1 fuy1x, y2g2 dA

  5 6
R

21 1 i=u1x, y2 i2 dA.

Now take any function w(x, y) such that w � 0 on C and con-
sider the following real-valued function: F(t) � A(u � tw) for 
small values of t. If u is the function that minimizes A over all 
functions having the values prescribed by g on C, then t � 0 
is a critical value for F; that is, F¿ 102 5 0. Note that

  F¿ 1t2 5
d

dt6
R

21 1 i=u1 t=wi2  dA

  5 6
R

  
0
0t

  21 1 i=u 1 t=wi2  dA

Related Problems

 1. Use the definition of norm in terms of the dot product to 
show that

 F¿ 102 5 6
R

 
=u

21 1 i=ui2
  �=w  dA.

 2. Suppose that h is a function and F is a vector field defined 
on R such that the first partial derivatives of h and the 
two component functions of F are continuous on R. Use 
the vector identity

 div (hF) � h div F � (grad h) � F

*For other surfaces, see www.helasculpt.com/gallery.
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  (Problem 27, Exercises 9.7) and the alternative form of 
Green’s theorem given in (1) of Section 9.16 to show 
that

 CC

1hF �  n2   ds 5 6
R

1h div F 1 1grad h2  �  F2   dA.

 3. Apply this last identity to the result given in Problem 1 
to show that

 6
R

w  div a 
=u

21 1 i=ui2
b  dA 5 0.

  Because this is true for any function w(x, y) such that 
w � 0 on C, it must be the case that

 diva 
=u

21 1 i=ui2
b 5 0.

 4. Show that the last equation in Problem 3 can be expressed 
as the nonlinear partial differential equation

 11 1 u2
y 2uxx 1 11 1 u2

x2uyy 2 2uxuyuxy 5 0.

  This equation, which is known as the minimal surface 
equation, was first written down by Lagrange in 1760.

 5. Show that if u is a function of x only or y only, then the 
graph of u is a plane.

 6. Use the Chain Rule and polar coordinates to show that 
if u � f   (r), then

 rf – 1r2 1 f ¿ 1r2 11 1 f  f ¿ 1r2g22 5 0.

 7. The second-order ODE in Problem 6 is a separable first-
order ODE in f ¿ 1r2. Use the method of Section 2.2 to 
show that if u � f  (r), then

 
du

dr
5

1

2r 2>c2 2 1
.

  Use the substitution r 5 c cosh u  to show that 

r 5 c   cosh a 

u 2 d
c

b , where c and d are constants.

  Note that this is the surface obtained by revolving a cat-
enary (see Section 3.11) around the z-axis. The surface 
of revolution is known as a catenoid. The catenoid was 
the first nonplanar minimal surface ever described (by 

Euler in about 1740). A soap film formed between two 
coaxial rings takes on this shape, not the shape of a cone 
or cylinder! See Figure 1.

  FIGURE 1 Catenoid

 8. Use the Chain Rule and polar coordinates to show that if 
u � f  (u), then u 5 cu 1 d, where c and d are constants. 
This surface—the spiral traced out by a horizontal line 
rotating around the z-axis with constant angular velocity 
while rising along the z-axis with constant velocity—is 
known as the helicoid. It was the second nonplanar mini-
mal surface ever described (by Jean Baptiste Meusnier in 
1776). From Figure 2 you might recognize the helicoid as 
a model for the rotating curved blades in machinery such 
as post hole diggers, ice augers, and snow blowers.  

  FIGURE 2 Helicoid

Afterword

Most minimal surfaces are geometrically more complicated than 
the catenoid and the helicoid and can be represented conveniently 
only in parameterized form rather than as graphs of functions. 
The study of the parameterizations of minimal surfaces has deep 
connections with harmonic functions and complex analysis, the 
subject of Part 5 of this text.
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