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An important part of mechanical engineering is the suppres-
sion of unwanted vibrations in machinery and structures. 
While this is an active area of research and development, 
the basic principles behind the most commonly used vibra-
tion control strategies date back over 100 years and can be 
illustrated with very simple spring/mass models. Moreover, 
the analysis of these models requires nothing beyond the basic 
theory of second order linear constant coefficient differential 
equations. Here we investigate a strategy for vibration control 
that can be modelled using a single equation. In a later project, 
you can investigate a different strategy that is modelled by 
a system of equations.

Suppose that a machine (for example an automobile engine) 
that vibrates in the course of its operation must be mounted on 
some sort of base. If the machine is mounted rigidly onto the 
base, its vibrations will be transmitted to and through the base. 
This might cause a number of problems, including damage to 
the base or the mounts or unacceptable discomfort for people 
using the machine.

A natural way to try to minimize such unwanted effects 
is to insert a protective mounting apparatus between the ma-
chine and the base. (In the case of an automobile engine, the 
engine is attached to the car not rigidly, but with parts called 
motor mounts.) Such a protective device, called a vibration 
isolator, commonly consists of one or more pads of elastic 
material (rubber, cork, or more exotic elastomers), a set of 
coil springs (such as is found inside a mattress), a sealed 
chamber containing air under pressure (commonly referred 
to as an air spring), or some combination of these. Regardless 
of the details of its design (and there have been hundreds of 
patents granted for such designs), a vibration isolator can be 
idealized by the configuration indicated in Figure 1(a). The 
machine is represented by a mass m, the elasticity of the isola-
tor by a spring having spring constant k, and the damping of 
the isolator by a dashpot having damping constant b. This is 
merely the spring/mass system analyzed in Section 3.8. The 
equation governing the motion of the mass m is:

 m 

d 2x

dt 
2 1 b 

dx

dt
1 kx 5 F0 sin vt (1)

where x represents the displacement of the mass from its equi-
librium position, t is time, and the vibration of the machine is 
represented by a sinusoidal forcing term of the form F0 sin vt.

We will quantify the effectiveness of this arrangement by its 
transmissibility T:

T 5
maximum force transmitted to the base through the vibration isolator

maximum force exerted on the base by a rigidly attached machine
5

FT

F0
.

Since the transient terms in the general solution of the above 
equation decay exponentially with time, we will calculate the 
transmissibility based on a steady state solution of (1). Ultimately, 
we wish to understand how the transmissibility depends on the 
parameters k and b.

 1. Recall that a steady state solution can be found in the 
form

 xs 5 c1 cos vt 1 c2 sin vt 5 A sin1vt 1 f2  (2)

  where A 5 2c1
2 1 c2

2. By substituting the first of these 
forms into (1), show that c1 and c2 satisfy the system of 
equations

 1k 2 mv22c2 2 bvc1 5 F0

 bvc2 1 1k 2 mv2 2c1 5 0

  and that

 A 5
F0

21  bv22 1 1k 2 mv2 22
.

 2. The force exerted on the base through the vibration isolator 

is b
dxs

dt
1 kxs. Use the second form of xs in (2) to show 

that the maximum magnitude of this force is

 FT 5 A2k2 1 1bv22
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FIGURE 1(a)
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  and that the transmissibility can be expressed as

 T 5ï 1 1 a2
b

bc

 
v

vn
b2

a1 2 a v
vn
b2b2

1 a2
b

bc

 
v

vn
b2

  where vn 5 !k>m is the natural frequency of the spring, 
and bc 5 2!mk 5 2mvn is the value of b giving critical 
damping in (2).

Note that we have expressed T in terms of two dimension-
less quantities: b>bc and v>vn. So we can use this expression 
to quantify the dependence of T on v (that is, the effectiveness 
of the vibration isolator as a function of the frequency of the 
machine vibration) in a way that makes no reference to an ar-
bitrary choice of units.

 3. Use a graphing utility to graph T as a function of v>vn for 
b>bc 5  0, 1>4, 1>2, 3>4, and 1, all on the same set of axes. 
(A viewing window of 0 # v>vn # 3 by 0 # T # 3 will 
show the relevant features of these five graphs.)

 4. Much can be deduced from these graphs, some of which 
may not be intuitively obvious and may even seem coun-
terintuitive.

  (a)  Verify both graphically and algebraically that the point 
1!2, 12  appears on each graph regardless of the value 
of b>bc.

  (b)  For what values of v>vn does the vibration isolator 
reduce the maximum value of the force transmitted to 
the base (T , 1)? Are there values of v>vn for which 
the vibration isolator makes things worse (T . 1)? 
Your answers should be independent of b>bc.

  (c)  Verify your answers to (b) algebraically by working 
with the inequalities T , 1 and T . 1.

  (d)  The incorporation of some damping (b . 0) pro-
tects the base against the resonance that would occur 
for b 5 0 if v  should, temporarily or by some 
accident, drift near vn. For fixed values of v and vn 
such that v>vn is within the range determined in (b), 
does increasing the damping constant b of the vibration 
isolator (and thereby also increasing b>bc) improve or 
detract from its effectiveness?

  (e)  Summarize your findings for the working engineer. 
Should the spring constant k of the vibration isolator 
be large (corresponding to “hard” springs) or small 
(corresponding to “soft” springs)? What would you 
advise about the degree of damping (i.e., the size 
of b)?

The same sort of vibration isolator can also be employed in 
the opposite sense to that considered above: to protect an object 
mounted on a base from vibrations of the base. For example, a 
CD player mounted in an automobile needs to be protected from 
vibrations of the automobile. On a larger scale, entire build-
ings have been built on foundations incorporating vibration 
isolators. To model this situation, refer to Figure 1(b) where 
x represents the vertical displacement of the object (mass m) 
from its equilibrium position and y 5 Y0 sin vt represents a 
sinusoidal motion of the base so that

 m 

d 2x

dt 
2 5 2k 1x 2 y2 2 b 

d

dt
 1x 2 y2. (3)

 5. Substitute the postulated form for y into (3) to produce 
a differential equation for x of the form

          m 

d 2x

dt 
2 1 b 

dx

dt
1 kx 5 Y02k2 1 1bv22 sin 1vt 1 c2.

  Then show that a steady state solution of this last equa-
tion can be found in the form

 xs 5 TY0 sin 1vt 1 c 1 f2

  where T is as above. (Hint: most of the work was already 
done in Problem 1!)

Thus the transmissibility T is also a measure of the effectiveness 
of a vibration isolator from this alternate point of view, but in 
reference to the amplitude of the motion transmitted from a 
base to a mounted object instead of the amplitude of the force 
transmitted from a mounted machine to a base.
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