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Large structures such as buildings and bridges that are built 
from many parts cannot be made completely rigid. They move 
in response to natural disturbances, such as wind or seismic 
activity, and to man-made disturbances, such as the flow of 
traffic on a bridge. In particular, every structure has a set of 
special frequencies called natural frequencies, or resonance fre-
quencies, at which it will respond particularly strongly. When 
subjected to periodic forces at one of these natural frequencies, 
a structure may respond with vibrations of an amplitude large 
enough to be uncomfortable for the occupants of the structure, 
or perhaps even dangerous to the structure itself. If engineers 
expect a structure to be subject to a periodic force at or near one 
of its natural frequencies, they may incorporate into its design 
a special device called a tuned vibration absorber. This is a 
device that suppresses vibration of the structure at one of its 
natural frequencies by transferring the energy that would cause 
such a vibration into vibration of a secondary mass. Tuned 
vibration absorbers are also used in smaller structures. For 
example, you might have seen small barbell shaped objects 
hanging from power transmission lines. These are tuned vibra-
tion absorbers called Stockbridge dampers that are installed to 
protect transmission lines from vibrations induced by wind. 
Tuned vibration absorbers can also be found in machinery of 
all sorts. (For example, most automobiles contain one or more 
tuned vibration absorbers.)

No matter how complicated a structure may be, we are 
concerned only with a particular one of its natural frequencies, 
so for our purposes a structure can be modelled as a spring/
mass system whose resonance frequency represents the struc-
ture’s troublesome natural frequency. Moreover, no matter how 
sophisticated the details of its design may be (and there are 
many variations based on such things as masses hanging from 
cables, masses attached to coil springs, masses suspended by 
pendulums, and even tanks of moving water) a tuned vibra-
tion absorber is in essence a spring/mass system attached to 
the structure. Therefore we can use the coupled spring/mass 
system in Figure 1(a) to model a structure (mass m1 and spring 
constant k1) equipped with a tuned vibration absorber (mass m2 
and spring constant k2).

From Section 3.12, we already have a system of dif-
ferential equations describing the motion of such a spring/

mass system, to which we need only add a sinusoidal forcing 
term acting on m1:

 m1x1–5 2k1 x1 1 k21x2 2 x12 1 F1 sin v t  (1)
 m2 x2–5 2k21x2 2 x12.

We wish to investigate the behavior of this system as tSq  for 
different values of the forcing frequency v, and we claim that 
we can do this by finding a particular solution for the system, 
ignoring the general solution of the homogeneous version of 
the system. One might object that since there are no damping 
terms in the system, the general solution of the homogeneous 
version of the system has terms that persist as tSq  for some 
initial conditions. However, if we were to add the slightest bit of 
damping to the system, the general solution of the homogeneous 
version of the resulting system would decay exponentially as 
tSq . And in a real mechanical structure, there is always some 
damping. So in the context of modelling a real mechanical struc-
ture, we can regard a particular solution of the system as repre-
senting the behavior of any solution of the system as tSq .

Based on our experience with the method of undetermined 
coefficients for a single second order equation, it makes sense 
to seek a particular solution of this system in which x1 and x2 
are each of the form c1 sin vt 1 c2 cos vt. But since there are 
no first order derivatives, and the second derivative of a sine 
function is still a sine function, we can simplify matters and 
seek a particular solution in the form

 x1 5 A sin vt, x2 5 B sin vt (2)

where A and B are constants to be determined.

 1. By inserting the form indicated in (2) into (1), show that 
A and B satisfy the system of equations

 1k1 1 k2 2 m1 v
2 2A 2 k2 B 5 F1

  2k2 A 1 1k2 2 m2v
2 2B 5 0

  and that
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FIGURE 1(a)
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  where v1 5 !k1>m1 and v2 5 !k2>m2 are the natural 
frequencies of the structure alone and of the absorber 
alone, respectively, m 5 m2>m1 is the ratio of the mass 
of the absorber to the mass of the structure, and F1>k1 is 
the static displacement of m1 under a constant force F1.

Note that the mass m1 will not vibrate at all when natural frequency 
v2 of the absorber equals the forcing frequency v. So to eliminate 
vibrations of the structure at its natural frequency, we tune the ab-
sorber to the natural frequency of the structure by setting v2 5 v1. 
It is convenient to measure the amplitude of the vibration of the 

structure with the quantity 2 A

F1>k1
2, which is dimensionless and 

therefore independent of particular units of measurement:
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.

 2. Use a graphing utility to graph 2 A

F1>k1
2 as a function of 

v

v1
 

for m 5 0.1, 0.2, 0.3, and 0.4 on different sets of axes. 

(A viewing window of 0 #
v

v1
# 2 by 0 # 2 A

F1>k1
2 # 4 

will show the relevant features of these four graphs.)

You should see that the single natural frequency v1 of the 
structure has been replaced by two natural frequencies for the 
structure-absorber assembly. When the forcing frequencyv 
coincides with either of these two natural frequencies, the 
absorber makes things worse by inducing enormous vibrations 
of the structure. However, the absorber is effective for forcing 
frequencies near the natural frequency v1 of the structure.

 3. Based on the graphs that you made above:

  (a)  What happens to the two natural frequencies of the 
structure-absorber assembly as m increases?

  (b)  What happens to the range of the forcing frequency 
v over which the absorber is effective?

To suppress the resonance of the structure-absorber assembly 
at its two natural frequencies, and to dissipate the energy 
that is transferred away from the structure into vibrations 
of the absorber mass m2, we can incorporate damping into 
the absorber. This is represented in Figure 1(b) by a dashpot 
providing viscous damping with a damping constant of b. 
The resulting damped vibration absorber is sometimes called 
a tuned mass damper. To write its equations of motion, we 
add the appropriate damping terms to (1) and obtain:

m1x1– 5 2k1x1 1 k21x2 2 x12 1 b1x2¿ 2 x1¿ 2 1 F1 sin vt (3)
m2x2– 5 2k21x2 2 x12 2 b1x2¿2 x1¿ 2.

A sinusoidal steady state solution can be derived for this system 
of the form

 x1 5 A sin 1vt 1 f12, x2 5 B sin 1vt 1 f22  (4)
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FIGURE 1(b)

where A and B are constants to be determined. We forgo this cal-
culation here (because it is rather long and messy), but the result 
is that the amplitude A with which mass m1 vibrates satisfies

2 A

F1>k1
2 5

ï a2
b

bc
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b
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 (5)

where m, v1, and v2 are as above, r 5 v2>v1, bc 5 2m2v1, 
and s 5 v>v1.

 4. (a)  Verify that when b 5 0, this expression reduces to 
the expression found in Problem 1.

  (b)  Suppose that we tune the tuned mass damper as we 
did in undamped case (r 5 1), and set m 5 0.1. 

Use a graphing utility to graph 2 A

F1>k1
2 as a function 

of s for b>bc 5 1>20, 1>8, and 1>2 on the same set 
of axes. (A viewing window of 0.7 # s # 1.3 by 

0 # 2 A

F1>k1
2 # 18 will show the relevant features of 

these three graphs.)

  (c)  Describe how the behavior of the tuned mass damper 
changes as b>bc increases from 0 to 1>2. (You may 
wish to include additional graphs for values of b>bc 
between the three values given above.) Compare 
its performance to that of the undamped vibration 
absorber for small b>bc and for large b>bc, bearing 
in mind that there are two issues at stake: effective 
suppression of vibrations at (and near) the natural 
frequency v1 of the structure, and suppression of the 
potentially dangerous resonances of the structure-
absorber assembly at its two natural frequencies.
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You should notice the visually striking fact that there are two 
points through which the three graphs in Problem 4(b) all pass. 
It can be shown that for any fixed choice of r and m, there are 

two points such that the graphs of  2 A

F1>k1
2 vs. s pass through 

those two points for all values of b>bc. The classical idea of 
“optimal” tuning for the tuned mass damper is to choose the 
parameters r and b>bc so that these two special points share 

the same value of  2 A

F1>k1
2, and so that this common value is 

(approximately) the maximum value of  2 A

F1>k1
2.

 5. The classical formulas given in many vibration engineer-
ing textbooks and handbooks for optimal tuning of the 
tuned mass damper are:

 r 5
1

1 1 m

  and

 
b

bc

5 Å 3m

811 1 m23
.

For a fixed value of m 5 0.1:
  (a)  Use a graphing utility to plot the same three graphs 

that you plotted in 4(b) on the same set of axes, but 
with r 5 1> 11 1 m2  instead of r 5 1. What does this 
special choice of r do?

  (b)  Now use a graphing utility to plot the single graph cor-

responding to r 5 1> 11 1 m2  and 
b

bc

5 Å 3m

811 1 m23
. 

What does this special choice of 
b

bc

 do?

Finally we note that just as one can eliminate the dashpot from 
the tuned mass damper in Figure 1(b) to produce an undamped 
tuned vibration absorber based on the spring alone, as is analyzed 
in Problems 1–3, one can also eliminate the spring to produce a 
vibration absorber based on viscous damping alone called a vis-
cous vibration absorber. Viscous vibration absorbers are less 
effective than tuned mass dampers, but are simpler to construct. 
Their performance can be analyzed by setting k2 5 0 in (5).
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