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Shortly before his death, Galileo Galilei (1564–1642) initiated 
the first attempt to design a pendulum driven clock. At that 
time, clocks were driven by falling weights or springs, and 
even the best of them gained or lost several minutes per day. 
Galileo hoped to achieve greater accuracy with a pendulum. In 
particular, Galileo believed that he had proven mathematically 
and verified experimentally that a pendulum is isochronous, 
that is, that the time it takes to complete one full swing is 
the same regardless of the size of the swing. Therefore, he 
reasoned, the frequency of oscillation of a pendulum is an 
especially reliable marker for the passing of time since it holds 
steady even if there are variations in the size of the pendulum’s 
swing. Galileo did not live to complete his design, and though 
his son Vincenzio began to build a pendulum-driven clock, he 
too died in 1649 before he could finish it.

Practically speaking, Galileo’s idea was timely; the pendulum-
driven clock did turn out to be the next major step forward in 
time keeping. But his cherished belief in the isochronicity of the 
pendulum turned out to be in error. The great Dutch scientist and 
mathematician Christian Huygens (1629–1695) built the first 
pendulum-driven clock in 1656. It kept time to within one minute 
per day, and within two years Huygens and others produced 
even better models that kept time to within ten seconds per day. 
However, during this work careful measurements revealed that a 
pendulum is not in fact perfectly isochronous, though for small 
swings of just a few degrees it is very nearly so. The immedi-
ate implication of this discovery was simple: build clocks with 
pendulums that swing only a few degrees. But Huygens wanted 
to dig deeper, and began to pursue the question: how can perfect 
isochronicity be achieved if not with a simple pendulum?

To generalize the motion of the free end of a pendulum during 
half of one full swing, from its highest point to its lowest, con-
sider Figure 1. There a bead is released from an initial position 
1x0, y02  at time t 5 0 and slides down a wire in the xy-plane that 
is slick enough that friction is negligible, eventually reaching 
the origin (0, 0). In the case of a circular wire, the bead moves 
as if it were swinging on the end of a pendulum attached to the 
center of the circle. (Either the wire or the pendulum applies 
a force on the bead perpendicular to its direction of motion 
that constrains it to move in a semicircle.) To allow the bead 
to move in other ways, we simply consider wires of different 

shapes connecting 1x0, y02  with (0, 0). Then Huygen’s question 
becomes: for what shape will the bead descend to the origin in 
the same time, regardless of its starting point 1x0, y02? In 1659, 
Huygens found the answer to this question in a remarkable tour 
de force of geometric physics without the aid of calculus or dif-
ferential equations, neither of which yet existed. We can answer 
this question much more easily. From calculus, we need to know 
that if s(t) represents the distance along the string that the bead has 
traveled at time t, the velocity ds/dt of the bead is given in terms 
of its horizontal and vertical velocities dx/dt and dy/dt by
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And from physics, we need to know what Galileo himself dis-
covered about the motion of a falling body released (with zero 
initial velocity) from a height y0:
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where g is the acceleration of a freely falling object due to 
gravity.

Related Problems

 1. The Isochrone of Huygens. Consider the arclength s 
indicated in Figure 1 as a function of y along the curve: 
s 5 f 1  y2 . Then we can compute the time taken by a bead 
to descend from 1x0, y02  to the origin using Equations (1) 
and (2) as follows:
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  (a)  Use the change of variable y 5 y0 z  to show that 

T 1y02 5
1!2g#

1
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f ¿ 1zy02!y0!1 2 z
 dz.

  (b)  We wish to find f such that T is a constant function 
of y0. This will certainly be true if for 0 , z , 1, 
f ¿ 1zy02!y0 is a function only of z and not of y0. We can 
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ensure this by setting 
0
0y0

 1 f ¿ 1zy02!y0 2 5 0. Show that 

this condition leads to the nonlinear differential equation 
2f – 1  y2y 1 f ¿ 1  y2 5 0 for 0 , y , y0.

  (c)   This last differential equation is first order in f ¿ . Solve 
it to show that f ¿ 1  y2 5 c>!y for a constant c . 0.

  (d)  Dividing both sides of Equation (1) by 1dy>dt22 yields 
1ds>dy22 5 1dx>dy22 1 1. Use the result of (c) to show 
that

 x 5 #Ä c 2 y

y
 dy.

  (e)  Use the trigonometric substitution y 5 c sin2 u , 
where 0 # u # p>2, and the “half angle identities” 
sin2 u5 112 cos 2u2>2  and cos2  u 5 111 cos 2u2>2, 
to show that the curve we seek can be parameterized 
by

 x 5
c

2
 1f 1 sin f2 1 k

 y 5
c

2
 11 2 cos f2

  for some constant k and 0 # f # p.

  (f)  Show that the curve given in (e) passes through 
1x, y2 5 10, 02  only when k 5 0, and that in this case 
it passes through 1x, y2 5 10, 02  when f 5 0 and 
through 1x0, y02  when f0 satisfies

 x0 5
c

2
 1f0 1 sin f02

 y0 5
c

2
 11 2 cos f02.

  (g)  Show that this last system of equations can be solved 
for c and f0 in terms of x0 and y0 if and only if 
0 , y0>x0 # 2>p. (So an isochrone connects 1x0, y02  
with the origin only when this condition holds.)

  (h)  The curve parameterized in (e) is sometimes called 
an inverted cycloid. When k 5 0, it is traced out by 
a point on a circle of radius c>2 that is rolling along 
the line y 5 c while hanging down below this line. 
Sketch a diagram of this, showing the position of the 
circle and the point for f 5 0, p>2, and p. (To get 
started, look up the cycloid in any calculus book, or 
online.)

Huygens went on to design and build pendulum clocks 
modified to force the free end of the pendulum to follow the 
path of an inverted cycloid. But though these modifications in-
spired more great mathematics from Huygens, they were not 
of lasting value in the design of clocks since they turned out to 

introduce more problems than they solved. Huygens also went 
on to become the mathematical mentor of Gottfried Leibniz 
(1646–1716), who was later to become a founder of the calcu-
lus. Leibnitz himself posed a different problem with a similar 
flavor in 1687: what shape should the wire in Figure 1 take 
so that the time it takes the bead to fall a given vertical dis-
tance is the same anywhere along the path of descent? This is 
equivalent to the vertical velocity of the bead being constant. 
Huygens was the first to respond to this challenge, guessing 
the solution and geometrically proving that it worked. Using 
differential equations, we can solve it systematically. We need 
the following generalization of Equation (2) that includes a 
non-zero initial velocity v0 for the bead:
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 2. The Isochrone of Leibniz. Let the constant verti-
cal velocity dy>dt  of the bead be v , 0. Then since 
1d x>dt22 1 1dy>dt22 5 1dy>dt22 f1 1 1dx>dy22g, we have 
v0

2 5 v 
211 1 m22 , where m 5 d x>dy at 1x0, y02 .

  (a)  Use Equations (1) and (3) to show that
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  (b) Find the general solution of this differential equation.
  (c)  Show that requiring the solution curve to pass through 

1x0, y02  yields the particular solution

 
3g

v2  1x0 2 x2 1 m3 5 c2g

v2  1  y0 2 y2 1 m2 d 3>2
.

      Under the change of variables X 5
3g

v2  1x0 2 x2 1 m3, 

Y5
2g

v2  1  y02 y21m2, this equation becomes X 
2 5 Y 

3, 

the graph of which is known as a semicubical 

parabola.

  (d)  Show that a bead departing 1x0, y02  along the iso-
chrone described in (c) reaches the origin when the 
following condition holds:

 a3g

v 
2  x0 1 m3b2

5 a2g

v2  y0 1 m2b3

.

 3. Modify the steps taken in parts (a)–(d) in Problem 2 to 
answer the following question: what shape should the 
wire in Figure 1 take so that the time it takes the bead to 
move a given horizontal distance is the same anywhere 
along the path of descent? This is equivalent to the hori-
zontal velocity of the bead being constant.
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