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curves that was much more liberal that Euclid’s ruler and compass 
method. But certain non-algebraic or transcendental curves 
were of increasing interest at the time.

One reason for the new interest in transcendental curves 
had to do with the advent of a new class of problems called 
inverse tangent problems: problems asking not to determine 
the tangent lines of a given curve, but rather to determine a 
curve whose tangent lines (or perhaps associated lines such as 
normal lines) satisfy some given property. In particular, it was 
discovered that a curve whose tangent lines satisfy some natural 
geometric condition might well turn out to be transcendental. 
This fact, along with the appearance of transcendental curves 
in mathematical physics, made it awkward to treat transcen-
dental curves as isolated curiosities apart from the rest of the 
geometry. What was needed was a theory that would systemati-
cally address geometric problems associated with tangent lines, 
quadrature, and rectification involving algebraic and transcen-
dental curves alike. Late in the 17th century, this theory was 
finally formulated. It was the calculus, which was pioneered 
independently in England by Isaac Newton (1643–1727) and 
in Germany by Gottfried Leibniz (1646–1716). Over time, 
calculus-based techniques for the solution of inverse tangent 
problems were developed and applied well beyond problems of 
elementary geometry, and were eventually consolidated into the 
systematic and efficient theory of first order differential equa-
tions that is presented in this chapter. Now even those inverse 
tangent problems that were cutting-edge challenges to the great 
mathematicians of the 17th century lie within the grasp of a 
beginning student of differential equations.

Related Problems

“I claim then that there is yet another analysis in geometry 
which is completely different from the analysis of Viète and 
of Descartes, who did not advance sufficiently in this, since 
its most important problems do not depend on the equations 
to which all of Descartes’s geometry reduces. Despite what 
he had advanced too boldly in his geometry (namely, that all 
problems reduce to his equations and his curved lines), he 
himself was forced to recognize this defect in one of his letters; 
for de Beaune had proposed to him one of these strange but 
important problems of the inverse method of tangents, and he 
admitted that he did not yet see it clearly enough.”—Gottfried 
Leibniz, personal letter, from Philosophical Essays by G. W. 
Leibniz, Roger Ariew, and Daniel Garber translators and 
editors, Hackett Publishing Company, Indianapolis, 1989.

Figure 1 illustrates the terminology associated with inverse 
tangent problems. We are given a curve and an axis, which we 
label the x-axis. Suppose that the tangent line of the curve at 
A intersects the x-axis at D, and the normal line to the curve at 
A intersects the x-axis at B. Then the tangent and normal of 
the curve at A are respectively defined to be the line segments 
AD and AB. The subtangent and subnormal of the curve at 
A are respectively defined to be the projections of the tangent 
and normal at A onto the x-axis, that is, line segments CD and 

The ancient Greeks classified geometric problems into three 
types. Planar problems were those requiring only lines and 
circles, which could be constructed in step-by-step fashion 
by straightedge and compass. Solid problems required the 
conic sections (ellipse, hyperbola, and parabola), which 
could be constructed only by intersecting cones and planes in 
three-dimensional space. Linear problems required even more 
exotic curves that could be constructed only by mechanical 
processes involving the juxtaposition of multiple simultane-
ous motions. Euclidean geometry provided a theory of planar 
problems that was considered rigorous because of the intuitive 
clarity and simplicity of straightedge and compass construc-
tions. In contrast, a philosophical prejudice developed that solid 
problems, and especially linear problems, could never be treated 
as rigorously as planar problems because the construction of the 
curves involved was too abstract or too complicated, or both. 
Supporting this prejudice was the fact that certain problems 
involving solid and linear curves admitted no general method of 
solution at the time, though they could be solved in special cases 
by clever ad hoc arguments. Foremost among these difficult 
problems were the determination of tangent lines of curves, the 
calculation of areas bounded by curves (quadrature), and the 
calculation of the arclengths of curves (rectification).

The idea that curves beyond lines and circles could not be fully 
integrated into a rigorous theory of geometry persisted for centuries, 
but finally began to change in the 17th century, when Frenchmen 
Pierre de Fermat (1601–1665) and René Descartes (1596–1650), 
working independently, catalyzed a revolution in thought by apply-
ing the tools of algebra to the geometry of curves. This approach, 
which formed the basis of what eventually became analytic geom-
etry, empowered them to formulate the first systematic methods 
for the determination of tangent lines. However, these methods 
were effective only for algebraic curves: curves that are graphs of 
polynomial equations in two variables. This class of curves includes 
lines, circles, the conic sections, and much more. Descartes was 
so excited about what he could do within this class of algebraic 
curves that he formulated his own theory of geometry based on it, 
complete with a method for geometrically constructing algebraic 
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BC. (Of course, for a decreasing function, or a function whose 
graph is below the x-axis, the picture will look a bit different, 
but the definitions are the same.)

In 1638 the French nobleman Florimond Debeaune, a fol-
lower and friend of Descartes, posed to Descartes in a letter what 
is cited by historians of mathematics as the very first inverse 
tangent problem: to find a curve on which the ratio of the ordinate 
to the length of the subtangent is proportional to the difference 
between the ordinate and the abscissa. In his reply to Debeaune, 
Descartes devised both a graphical method of sketching these 
curves and a numerical method for calculating the coordinates 
of particular points on them. But he could not give analytical 
formulas for the curves, which he realized were not algebraic 
and therefore not within the purview of his general theory of 
geometry. Leibniz included a solution of this problem in his very 
first paper on his new theory of the calculus, which appeared in 
1684, as an example to demonstrate the power of his methods.

 1. Using Figure 1, show that Debeaune's problem trans-
lates into the differential equation f ¿ 1a2 5 b1a 2 f 1a22 , 

or 
dy

dx
5 b1x 2 y2  for some constant b.

 2. Descartes recast this problem in terms of the new de-
pendent variable z 5 x 2 y 2 1>b. Show that with this 
change of variable, the differential equation in Problem 1 

becomes 
dz

dx
5 2bz. Solve this differential equation to 

find z as a function of x. Then find y as a function of x on 
the curves of Debeaune. (There will be two constants 
in your formula: b and a constant of integration.)

 3. Find and solve a differential equation for the func-
tions f on whose graphs the length of the subtangent 
at A 5 1a, f  1a22  is constant. Why is this problem often 
referred to as Debeaune’s problem?

Some time between 1672 and 1676, when Leibniz was 
living in Paris, a prominent architect, physician, anatomist, 

and man of letters by the name of Claude Perrault posed to 
Leibniz a natural sister question to Debeaune’s: which curves 
have tangents of constant length? Perrault showed Leibniz a 
vivid physical realization of such a curve by placing his pocket 
watch on a table, extending the watch’s chain in a straight line 
so that it ended on an edge of the table, and pulling the end of 
the chain along that edge. The edge of the table then becomes 
our x-axis and, since at each moment the watch moves in the 
direction indicated by the chain, the chain itself is a tangent of 
constant length to the curve traced out by the watch. Leibniz did 
not publish his solution to this problem until 1693.

 4. Derive and solve a differential equation for the function 
y 5 f 1x2  whose graph solves Perrault’s problem. (See 
Problem 28 in the Exercises of Section 1.3 and Problem 27 
in the Review Exercises of Chapter 2. You will have to 
express x as a function of y. The solution looks a bit simpler 
if you assume that the curve passes through the point 10, s2 , 
where s is the constant length of the tangent.)

A solution to Perrault’s problem is known as a tractrix. Leibniz 
noticed that a machine based on Perrault’s physical realization 
of the tractrix could, in effect, mechanically produce a graphical 
solution of the differential equation defining the tractrix. This 
thought inspired him to design a machine that could do the same 
for other differential equations. Such mechanical differential 
equation solvers based on “tractional motion” were designed and 
built by many mathematicians at various times right up until the 
advent of electronic computers. The tractrix has other engineer-
ing applications that have better stood the test of time, including 
applications in the design of mechanical objects such as bearings, 
gears, and valves, and in the design of audio speakers.

In Problems 5–7, derive a differential equation for the func-
tions y 5 f 1x2  whose graphs satisfy the given property. Then 
find all solutions of the resulting differential equation. (Be sure to 
account for any singular solutions.) Finally note that, in contrast 
to the famous problems above, the resulting curves would have 
been familiar to the ancient Greeks. They are all lines, circles, 
and conic sections with particular orientations and locations; 
describe them as such.

 5. The length of the normal at A 5 1a, f 1a22  is constant.
 6. The length of the subnormal at A 5 1a, f 1a22  is constant.
 7. The length of the normal at A 5 1a, f 1a22  is equal to the 

distance between A 5 1a, f 1a22  and the origin 10, 02 .

Now do the same for Problem 8. Do the solution curves include 
any lines, circles, or conic sections? Are they all algebraic?

 8. The length of the subtangent at A 5 1a, f 1a22  is propor-
tional to a.

y

B D

y = f (x)

A = (a, f (a))

xC = (a, 0)

FIGURE 1 Inverse tangent problems project
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