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Communication engineers interpret the Fourier transform 
as decomposing an information-carrying signal f (x), where 
x represents time, into a superposition of pure sinusoidal 
“tones” having frequencies represented by a real variable. In 
fact, engineers usually think about the resulting “frequency 
domain” representation as much as or more than the “time 
domain” representation (that is, the signal itself)! A funda-
mental fact of signal processing is that the narrower a signal is 
in the time domain, the broader it is in the frequency domain. 
Conversely, the narrower a signal is in the frequency domain, 
the broader it is in the time domain. This effect is important 
because in practice, a signal must be sent in a limited interval 
of time and using a limited interval, or “band,” of frequen-
cies. In this project, we describe and investigate this trade-
off between duration and bandwidth both qualitatively and 
quantitatively. The results of our investigation will support 
a commonly quoted rule of thumb: The number of different 
signals that can be sent in a certain duration of time using a 
certain band of frequencies is proportional to the product of 
the time duration and the width of the frequency band.

Related Problems

We will use the complex form of the Fourier transform and 
inverse Fourier transform given in (5) and (6) of Section 15.4. 
We will use the notation f̂ 1a2  to denote the Fourier transform 
of a function f (x) in a compact way that makes its depen-
dence on f explicit—that is, f̂ 1a2 5 ^5   f 1x26. We take f to be 
a real-valued function, and we warm up by noting two simple 
properties that f̂ enjoys.

 1. Show that if a � 0, then f̂ 12a2 5 f̂ 1a2. So for any a, 
Z f̂ 12a2 Z 5 Z f̂ 1a2 Z. (Here the notations z and Zz Z represent 
the conjugate and the modulus of a complex number z, 
respectively.)

 2. If k is a real number, let fk1x2 5 f 1x 2 k2. Show that

 f̂ k1a2 5 eiak f̂ 1a2

  So shifting a signal in time does not affect the values of 
Z f̂ 1a2 Z in the frequency domain.

    Keeping these facts in mind, we now consider the effect 
of narrowing or broadening a signal in the time domain 
by simple scaling of the time variable.

 3. If c is a positive number, let fc 1x2 5 f 1cx2. Show that

 f̂ c 1a2 5
1
c

 f̂  aa
c
b  .

  Thus narrowing the signal function f in the time domain 
(c � 1) broadens its transform in the frequency domain, 
and broadening the signal function f in the time do-
main (c � 1) narrows its transform in the frequency 
domain.

    To quantify the effect that we observe in Problem 3, we 
need to settle on a measure of the “width” of the graph of 
a function. The most commonly used measure is the root 
mean square width, which when applied to a signal f in 
the time and frequency domains yields a root mean square 
duration D (  f   ) and a root mean square bandwidth B(  f   ) 
given by

 fD1  f  2g  2 5
#
q

2q
x 2f  f 1x2g2 dx

#
q

2q
f  f 1x2g2 dx

  and

 fB1   f  2g  2 5
#
q

2q
a2 Z f̂ 1a2 Z2 da

#
q

2q
 Z f̂ 1a2 Z2 da

 .

   The bandwidth and duration are calculated relative to 
“centers” of a � 0 and x � 0 because, by Problems 1 
and 2, the graph of Z f̂ 1a2 Z2 is symmetric around a � 0 in 
the frequency domain, and the signal can be shifted hori-
zontally in the time domain without affecting the graph 
of Z f̂ 1a2 Z2 in the frequency domain.

 4. Show that for a family of functions fc 1x2  defined in 
Problem 3, D1   fc2 � B1   fc2  is independent of c.

 5. Show that for the family of functions fc 1x2 5 e2cZxZ, 

D1  fc2 � B1   fc2 5
!2

2
. [Hint: By Problem 4, you can just 

take f 1x2 5 f11x2. The necessary Fourier integral can be 
gleaned quickly from Example 3 of Section 15.3. To evalu-
ate the integrals in D(  f ) and B(  f ), think about integration 
by parts and partial fractions, respectively.]

    So the duration and the bandwidth of a signal are in a 
sense inversely proportional to each other under scaling 
of the time variable. What about the constant of propor-
tionality? How small can D(      f   ) � B(     f   ) be? Remarkably, 
there is a lower limit for this product.
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 6. Derive the uncertainty inequality: If 

 #
q

2q
f  f 1x2g  

2 dx , q,  #
q

2q
 Z f̂ 1a2 Z2 da , q,

  and

 
lim

xS�q
 ZxZf  f 1x2g2 5 0,

  then D1   f  2 � B1   f  2 $ 1
2. Follow these steps.

  (a) Establish Parseval’s formula:

 #
q

2q
f  f 1x2g2 dx 5

1

2p
 #
q

2q
Z f̂ 1a2 Z2 da.

    [Hint: Apply the convolution theorem given in 
Problem 20, Exercises 15.4 with g(x) � f ( �x).

      Specifically, apply the formula for the inverse 
Fourier transform given in (6) of Section 15.4, show 
that ĝ 1a2 5 f̂ 1a2, and then let x � 0.]

  (b)  Establish the Schwartz inequality: For real-valued 
functions h1  and h2,

        2 #
b

a

h11s2h21s2  ds 2 2 # a#
b

a

fh11s2g2 dsb a#
b

a

fh21s2g2 dsb
    with equality occurring only when h2 5 ch1, where 

c is a constant [Hint: Write 

 #
b

a

flh11s2 2 h21s2g2 ds 

    as a quadratic expression Al2 1 Bl 1 C in the real 
variable l. Note that the quadratic is nonnegative for 
all l and consider the discriminant B2 2 4AC.]

  (c)  Establish the uncertainty inequality. [Hint: First, apply 
the Schwartz inequality as follows:

 2 #
q

2q
x f 1x2 f ¿ 1x2 dx 2 2 # a#

q

2q
fx f 1x2g2dxb  a#

q

2q
f  f ¿ 1x2g2 dxb .

    Use integration by parts to show that

 eq
2qxf 1x2 f ¿ 1x2   dx 5 21

2eq2qf  f 1x2g2 dx.

    Rewrite the second integral appearing on the right-
hand side of the inequality using the operational prop-
erty (11) of Section 15.4 and Parseval’s formula.]

 7. (a)  Show that if f gives the minimum possible value of 
D(  f   ) · B(  f   ), then

 f  ¿ 1x2 5 cxf 1x2

    where c is some constant. Solve this differential 
equation to show that f 1x2 5 decx 2>2 for c � 0 and 
d � a constant. (Such a function is called a Gaussian 
function. Gaussian functions play an important role 
in probability theory.)

  (b)  Take the Fourier transform of both sides of the 
 differential equation in part (a) to obtain a dif ferential 
equation for f̂ 1a2  and show that f̂ 1a2 5 f̂ 102ea

2>12c2, 
where c is the same as in part (a). You will need the 
following fact:

  
d

da
 f̂  1a2 5

d

da#
q

2q
f 1  x2  eiax dx 5 #

q

2q
 
0
0a

 f 1  x2  eiax dx

  5 #
q

2q
ix f 1x2eiax dx 5 i x f 1x2  .

    (In Problem 35 in Exercises 9.11, we saw that 
eq
2qe2x 2

 dx 5 2p. From this fact you can deduce 

that f̂  102 5 22p>ZcZ � d.2

  So the minimum possible value of D(  f ) � B(  f ) is at-
tained for a Gaussian function, whose Fourier transform 
is another Gaussian function!

The word “uncertainty” is associated with the inequality pre-
sented in Problem 6 because, from a more abstract point of 
view, it is mathematically analogous to the famous Heisenberg 
uncertainty principle of quantum mechanics. (The interpreta-
tion of this principle of quantum mechanics is a subtle matter, 
but it is commonly understood as “the more accurately one 
determines the position of a particle, the less accurately one 
knows its momentum, and vice versa.”)
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