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The heat equation and wave equation are derived in Section 13.2 
to describe very different phenomena. And indeed their solu-
tions (studied in Sections 13.3 and 13.4 respectively) behave 
very differently. However, many important differential equa-
tions involve both heat-like and wave-like terms. Here we study 
an example of this in the context of traffic flow on a highway, 
some aspects of which are modelled by traffic engineers using 
differential equations.

We idealize a one-way highway as the x-axis and let t represent 
time. We represent the distribution of cars on the highway by a 
density function u1x, t2  giving the density of cars (cars per unit 
length) at a position x and time t. We represent the flow of traf-
fic by a flux function f1x, t2  giving the number of cars passing 
position x per unit time at time t. For the sake of simplicity, we 
assume that cars do not enter or leave the highway. Thus on any 
interval a # x # b, the rate of change of the number of cars in 
the interval is equal to the number of cars entering the interval at 
x 5 a minus the number of cars leaving the interval at x 5 b:
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This relation can be converted to a differential equation, since 
at any time t and on any interval a # x # b,
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from which it follows that at any time t and any position x,
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The equation (2) is the general conservation law governing 
the flow of traffic under the assumption that the total amount of 
traffic is conserved. Further modelling assumptions can be incor-
porated into the form of the flux function f, which can depend 
on x and t directly or through u and the derivatives of u.

If all the cars move together at the same velocity, then 
f 5 cu where c is that velocity, c . 0 indicating motion in 
the positive x direction, and c , 0 indicating motion in the 
negative x direction. The resulting equation is known as the 
convection equation:

 ut 1 cux 5 0. (3)

 1. Use the methods of Exercise 12 of Section 13.4 to show 
that the general solution to the convection equation is 
u1x, t2 5 f 1x 2 ct2  where u1x, 02 5 f 1x2  is the initial 
traffic density. Thus every solution of the convection 
equation is a traveling wave solution of the wave equa-
tion: a wave that maintains its shape while moving with 
a constant velocity.

Next suppose that, perhaps during a traffic jam, traffic 
moves according to the flux function f 5 2kux for some 
k . 0, that is, traffic moves from high density regions to low 
density regions at a rate proportional to the negative of the 
density gradient. The resulting equation is known both as the 
heat equation and as the diffusion equation:

 ut 2 kuxx 5 0. (4)
Thus both the heat equation and the convection equation (which 
by Problem 1 is essentially a one-way wave equation) are con-
servation laws.

While it is hard to imagine traffic actually moving accord-
ing to the diffusion equation, even in a terrible traffic jam, it 
is easy to imagine drivers tending to seek out lower traffic 
density while also moving toward their destination. This can 
be modelled by the flux function f 5 cu 2 kux where k . 0
, resulting in the diffusion–convection equation:

 ut 1 cux 5 kuxx. (5)

 2. Show that if u1x, t2  satisfies (5) then the function u1h, t2  
where h 5 x 2 ct  satisfies the diffusion equation 
ut1h, t2 5 kuhh1h, t2 . So the processes of convection and 
diffusion proceed independently in (5).

More realistic traffic flow models reflect the fact as the traf-
fic density increases cars move more slowly, and at a certain 
critical density D cars cease to move at all. So let’s represent 
the car velocity v 1u2  by a velocity function v 1u2  such that 
v¿ 1u2 , 0 and v– 1u2 # 0 for 0 , u , D as in Figure 1. The 
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FIGURE 1 Car velocity as a function of traffic density.
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flux function based on v is f1u2 5 uv 1u2  as in Figure 2 and 
the resulting nonlinear convection equation is

 ut 1 f¿ 1u2ux 5 0. (6)

Incorporating a diffusion effect into (6) yields the nonlinear 
diffusion–convection equation known as the generalized 
Burgers equation:

 ut 1 f¿ 1u2ux 5 kuxx. (7)

 3. Check directly (by differentiating) that under our as-
sumptions on v1u2 , f– 1u2 , 0 for 0 , u , D so that 
f¿ 1u2  is a decreasing function of u for 0 # u # D.

 4. By inserting the form u 5 f 1x 2 ct2  into (6), find an 
ordinary differential equation for f and show that the 
only traveling wave solutions of (6) are constant.

Here we seek to model the following situation: low density 
traffic moving forward with high speed encountering high den-
sity traffic moving forward with slow speed. We have all seen 
what actually happens: a transition zone between low density 
and high density traffic forms and moves much as a traveling 
wave moves. But from Problem 4 we know that there are no 
nontrivial traveling wave solutions of (6).

Worse still, it can be shown that with a flux f such as we 
have specified, any initial data u1x, 02  for (6) that puts a region 
of lower density traffic behind a region of higher density traf-
fic leads to a solution of (6) that develops a discontinuity after 
some finite time. Essentially, the low density traffic moves 
faster than the high density traffic and eventually catches up to 
it. If the low density, high speed drivers do not slow down until 
the traffic density at their current position becomes high as in 
(6) an abrupt (that is, discontinuous) change in traffic density 
and speed will develop. We have all experienced this when we 
have been surprised by an unforseen increase in traffic density, 
and attendant decrease in traffic speed, and have had to jam on 
our brakes to try to avoid a crash. In other words, if low density 
traffic follows high density traffic, the dependence of traffic 
velocity on traffic density in (6) given by a flux f such as we 
have specified will increase the gradient ux of the traffic density 
u to the point where u forms a jump discontinuity.

Of course, drivers do in fact attempt to adjust their speeds 
not only according to the traffic density at their current posi-
tions but also according to the gradient of the traffic density 
(i.e., according to what they see some distance ahead of them). 

In order to avoid abrupt changes in traffic density, they try to 
remain spread out by slowing down early when they see that 
the traffic density ahead of them is increasing. This effect is 
modelled by the diffusion term in (7).

So we seek a traveling wave solution u 5 f 1x 2 ct2  of (7) 
satisfying the following conditions for traffic densities u1 and 
u2 with 0 # u1 , u2 # D:

lim
hS2q

f 1h2 5 u1,  lim
hSq

f 1h2 5 u2, and  lim
hS�q

f ¿ 1h2 5 0.

 (8)

 5. Insert the form u 5 f 1x 2 ct2  into (7) to obtain a second 
order ordinary differential equation for f, and show that 
antidifferentiating this equation once yields
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ff1  f  2 2 1cf 1 I 2g  (9)

  where I is a constant of integration.

 6. By letting hS�q , show that in order for (8) to hold, 
I and c must satisfy

 f1u22 5 cu2 1 I and f1u12 5 cu1 1 I. (10)

 7. Use a sketch based on Figure 2 to explain why, for 
0 # u1 , u2 # D, it is always possible to choose I and c 
so that (10) is satisfied.

 8. Now fix u1 and u2 such that 0 # u1 , u2 # D and let 
I and c in (9) satisfy (10).

  (a)   Using your sketch from Problem 7, sketch a graph 

of y 5
1

k
 ff1  f 2 2 1cf 1 I 2g  and a phase line for 

the autonomous differential equation (9). (See 
Section 2.1.2.)

  (b)  Sketch a graph of y 5 f 1h2  for a solution of (9). 
(How many inflection points does the graph have, 
and why?)

  (c)  If the solution to (9) in the special case when k 5 1 is 
denoted F1h2 , show that f 1h2 5 F1h>k2  satisfies (9), 
so that for any value of k the desired traveling wave 
solution to (7) is

 u 5 F ax 2 ct

k
b . (11)

  (d) Show that for any value of k,

 c 5
f1u22 2 f1u12

u2 2 u1
. (12)

  (e)  Use your sketch from Problem 7 to show that c can be 
positive, negative, or zero. Describe what is happening 
on the highway in each of these cases.

 9. Let v 1u2 5 4 2 2u and D 5 2 so that f1u2 5 4u 2 2u2 
for 0 # u # 2. Solve (9) explicitly in the special case 
when u1 5 1 and u2 5 2. Then set f 102 5 3>2 and use 
a graphing utility to graph the resulting function f for 
k 5 10, 1, and 1>10.

FIGURE 2 Traffic flux as a function of traffic density.
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The effect of diffusion is made remarkably explicit in (11) and 
should also be clear in your graphs from Problem 9. The larger 
the value of k, the less abrupt the transition from low density to 
high density. On the other hand as kS 0, transforming (7) into 
(6), the traveling waves (11) maintain the same velocity c, but 
approach the function

 u1x, t2 5 eu1 for x 2 ct , 0

u2 for x 2 ct . 0.

This function has a jump discontinuity that propagates with 
velocity c. It is not differentiable where x � ct, so it cannot 
satisfy the differential conservation law (6) when x � ct. But 
it can be shown that it does satisfy the corresponding integral 
conservation law (1) on any interval a # x # b. It is an ex-
ample of a shock wave solution of (6): a solution that satisfies 
(1) on any interval a # x # b and satisfies (6) everywhere 
except along a certain curve, called a shock path in the x � t 
plane, where it is discontinuous. The smooth traveling waves 
(11) that approach the shock wave solution as kS 0 are called 
shock profiles.

The nonlinear diffusion–convection equation (7) has smooth 
shock profiles modelling transitions from low traffic density 
to high traffic density because the sharpening effect of non-
linear convection on the density function is balanced by the 
smoothing effect of diffusion. The only solutions of the non-
linear convection equation (6) modelling such transitions are 
discontinuous shock wave solutions. In general, shock wave 
solutions of nonlinear conservation laws are usually considered 
physically significant only when they are limits of smooth 
shock profiles obtained by balancing nonlinear convection with 
diffusion because, in reality, some diffusive effect is nearly 
always present even if it is very small. For example, in the 
nonlinear equations governing the velocity of a flowing fluid, 
the diffusive effect is due to the conversion of kinetic energy 
to heat by internal friction, a process called dissipation that 
is incorporated into the equations using a property of the fluid 
called viscosity. This is why, even in other contexts, a diffu-
sion term is sometimes called a dissipation term or viscosity 
term and the shock wave limit of shock profile solutions is 
sometimes called a vanishing viscosity limit.
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