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the trajectory of the projectile in the xy-plane is a 
parabola.

	 2.	 A central question throughout the history of ballistics has 
been this: Given a gun that fires a projectile with a certain 
initial speed v0, at what angle with respect to the horizontal 
should the gun be fired to maximize its range? The range 
is the horizontal distance traversed by a projectile before it  
hits the ground. Show that according to (1), the range of  
the projectile is (v0

2 /g) sin2q, so that a maximum range  
of x = v0

2 /g is achieved when q = p /4 = 45°.
	 3.	 Show that the maximum height attained by the projectile 

if launched with q = 45° for maximum range is v0
2 /(4g).

Mathematically, Galileo’s model is perfect. But in practice 
it is only as accurate as the hypotheses upon which it is based. 
The motion of a real projectile is resisted to some extent 
by the air, and the stronger this effect, the less realistic are 
the hypotheses of constant horizontal velocity and constant 
vertical acceleration, as well as the resulting independence of 
the projectile’s motion in the x and y directions.

The first successful model of air resistance was 
formulated by the Dutch scientist Christiaan Huygens 
(1629–1695) (who was also responsible for the first accurate 
determination of the acceleration g due to gravity) and the 
great Isaac Newton (1643–1727). It was based not so much 
on a detailed mathematical formulation of the underlying 
physics involved, which was beyond what anyone could 
manage at the time, but on physical intuition and ground- 
breaking experimental work. Newton’s version, which 
is known to this day as Newton’s law of air resistance, 
states that the resisting force or drag force on an object 
moving through a resisting medium acts in the direction 
opposite to the direction of the object’s motion with a 
magnitude proportional to the density r of the medium, the 
cross sectional area A of the object taken perpendicular to the 
direction of motion, and the square of the speed of the object. 
In modern vector notation, the drag force fD is given in terms 
of the velocity v of the object this way:

fD = − = −1
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where in the coordinate system of Problems 1–3 above, v = 
〈dx/dt, dy/dt〉. (The traditional factor of 1/2 is related to the 

The first mathematically correct theory of projectile motion 
was originally formulated by Galileo Galilei (1564–1642), 
then clarified and extended by his younger collaborators 
Bonaventura Cavalieri (1598–1647), best known today for his 
“principle of indivisibles” (a precursor to the integral calculus) 
and Evangelista Torricelli (1608–1647), best known as the 
inventor of the barometer. Galileo’s theory was based on two 
simple hypotheses suggested by experimental observations: that 
a projectile moves with constant horizontal velocity and with 
constant downward vertical acceleration. Galileo, Cavalieri, and 
Torricelli did not have calculus at their disposal, so their argu
ments were largely geometric, but we can reproduce their results 
using a system of differential equations.

Suppose that a projectile is launched from ground level at an 
angle q with respect to the horizontal and with an initial velocity 
of magnitude v0 m/s. Let the projectile’s height above the ground 
be y meters and its horizontal distance from the launch site be x 
meters, and for convenience take the launch site to be the origin 
in the xy-plane. Then Galileo’s hypotheses can be represented 
by the following initial-value problem:
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where g = 9.8 m/s2, x(0) = 0, y(0) = 0, x'(0) = v0cos q (the 
x-component of the initial velocity), and y'(0) = v0sin q (the 
y-component of the initial velocity). See Figure 1.

Related Problems

	 1.	 Note that the system of equations in (1) is decoupled; that 
is, it consists of separate differential equations for x(t) 
and y(t). Moreover, each of these differential equations 
can be solved simply by antidifferentiating twice. Solve 
(1) to obtain explicit formulas for x(t) and y(t) in terms 
of v0 and q. Then algebraically eliminate t to show that 
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underlying physics in a way that need not concern us here.) 
When the force of gravity and this drag force are combined 
according to Newton’s second law of motion (“the force on a 
projectile equals its mass m times its acceleration”):

m〈d 2x/dt 2, d 2y/dt 2〉 = 〈0, -mg〉 + fD 

the initial value problem (1) is modified to read:
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where x(0) = 0, y(0) = 0, x'(0) = v0 cos q, and y'(0) = v0 sin q.
Huygens seemed to believe the proportionality of the 

magnitude of drag force to the square of the speed to be universal, 
but Newton suspected that multiple physical effects contribute 
to drag force, not all of which behave that way. He turned out 
to be correct. For example, when the speed of an object is low 
enough compared to the viscosity (internal resistance to flow) 
of the medium, the magnitude of the drag force on the object 
ends up being approximately proportional to its speed (not the 
square of its speed), a relationship known as Stokes’ law of air 
resistance. Even today, there is no quick recipe for predicting 
drag force for all objects under all conditions. The modeling 
of air resistance is complicated and is done in practice by a 
combination of theoretical and empirical methods.

The coefficient C in (2) is called the drag coefficient. It is 
dimensionless (that is, it is the same no matter what units are 
used to measure mass, distance, and time) and it can usually be 
regarded as depending on the shape of a projectile but not on its 
size. The drag coefficient is such a convenient index for measuring 
how much air resistance is felt by a projectile of a given shape that 
it is now defined in terms of the drag force to be 2||  fD|| | (rA||v||2) 
even when this ratio cannot be regarded as constant. For example, 
under Stokes’ law of air resistance, C would be proportional to the 
reciprocal of the speed. Of greater concern to us is the fact that 
the drag coefficient of a projectile in air increases sharply as its 
speed approaches the speed of sound (approximately 340 m/s in 
air), then decreases gradually for even higher speeds, becoming 
nearly constant again for speeds several times the speed of sound. 
This was first discovered by the British scientist Benjamin 
Robbins (1707–1751), whose book Principles of Gunnery is 
generally regarded as inaugurating the modern age of artillery 
and of the science of ballistics in general. As guns were used to 
shoot projectiles further and further with greater and greater initial 
speeds throughout the eighteenth and nineteenth centuries, the 
dependence of the drag coefficient on speed took on greater and 
greater practical importance. Moreover, as these projectiles went 
higher and higher, the fact that the density of the air decreases 
with increasing altitude also became important. By World War 
I, the density of the air as a function of altitude y above sea level 
in meters was commonly modeled this way:

r ( y) = 1.225e-0.00010361y kg/m3

and military engineers were accustomed to incorporating into 
(2) the dependence of C on speed and of r on y. But one last 
major surprise was stumbled upon by German engineers during 
World War I. Our version of this story is based on the book 
Paris Kanonen—the Paris Guns (Wilhelmgeschütze) and Project 
HARP by Gerald V. Bull (Verlag E. S. Mittler & Sohn GmbH, 
Herford, 1988).

In the fall of 1914, the German Navy charged the famous 
Friedrich Krupp engineering firm with designing a system (gun 
and shells) capable of bombing the English port of Dover from 
the French coast. This would require firing a shell approximately 
37 kilometers, a range some 16 kilometers greater than had 
ever been achieved before. Krupp was ready for this challenge 
because it had already succeeded in designing and building shells 
with innovative shapes that had lower drag coefficients than any 
pre-war shells. The drag coefficient for one of these shells can be 
well approximated by the following piecewise linear function, 
where the speed v is in m/s:
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In addition, Krupp’s engineers already had built an experimen
tal gun having a 35.5 cm diameter barrel that could fire 535 kg 
shells with an initial speed of 940 m/s. They calculated that if 
they built one of their new low-drag shells with that diameter 
and mass and used this gun to launch it at a 43° angle to the 
horizontal, the shell should have a range of about 39 km. The 
shell was built, and a test firing was conducted on October 21, 
1914. For the results, we quote a first-hand account by Professor 
Fritz Rausenberger, managing director of the Krupp firm at the 
time (from pages 24–25 in Bull’s book):

“After the firing of the first shot, with a top zone propelling 
charge and at 43° elevation, we all waited with anxiety for  
the spotting report to be telephoned back to us giving the 
location of the inert shell impact. The anxiety was that 
normally associated when trying to reach a range never before 
achieved. But the spotter’s report on impact never came. None 
of the observers located along the full length of the range had 
observed impact.…

Since no observation posts had been established beyond 
the 40 km mark, any impact outside of the area would have 
to be located and reported by local inhabitants using normal 
telephone communication between the neighbouring farms 
and villages. Thus it took several hours before the range staff 
received notification that the shell had impacted in a garden 
(without causing damage) some 49 km down-range from the 
battery. This was an unexpectedly favorable result but raised the 
question of how the range increase of 25% over that predicted 
using standard exterior ballistic techniques occurred.… After 
careful study of the method of calculating range, it was clear 
that in the computations an average, constant air density was 
used which was larger than the average along the trajectory. 
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the results, it should make you feel better that we are 
not pretending to take everything into account in this 
model. For example, a missile moving at an angle 
relative to its axis of symmetry can experience a 
substantial lift force of the same sort that makes airpla
nes fly. Our model does not account for the possibility 
of lift, the curvature and rotation of the earth, or 
numerous other effects.)

Rausenberger notes that once his engineers realized how im-
portant the exponentially decaying r was in calculating range, 
they did a series of calculations and found that the maximum 
range for their test would actually have been achieved with a 
launch angle of 50° to 55°. In hindsight, they realized that this 
was because a larger launch angle would result in the shell 
traveling higher and therefore in less dense air.

	 7.	 Check this by plotting the trajectory of the test shell with 
exponentially decaying r every two degrees from 43° to 
55°. What do you find?

After these surprising results, engineers at Krupp became inter-
ested in the challenge of attaining even larger ranges. The only 
way they could think of to talk the German High Command 
into committing to the trouble and expense of pursuing this 
goal was to sell them on the possibility of bombing Paris from 
behind the German front line, which would require a range of 
some 120 km. The German High Command quickly approved 
this idea, and after several years of work Krupp produced what 
are now known as the Paris Guns. These guns were designed 
to launch a 106 kg shell having a diameter of 210 mm with an 
initial speed of 1646 m/s. At a 50° launch angle, such a shell 
was predicted to travel over 120 km.

	 8.	 Simulate the trajectory of a shell from a Paris Gun using 
(2) with exponentially decaying r. Evaluate the results, 
keeping in mind the caveats about our modeling noted 
in Problem 6. How high does the shell go? Now change 
the launch angle from 50° to 45°. What happens?

Seven Paris Guns were built, but only three were used. They 
fired a total of 351 shells toward Paris between March 23 and 
August 9 of 1918. The damage and casualties that they caused 
were not tactically significant. They were never intended to be 
so; there was no control over where the shells would fall in 
Paris, and the amount of explosive carried by each shell was 
quite small. Instead, they were intended as a form of intimida-
tion, a “scare tactic.” However, military historians agree that 
they were not effective in that sense either. Their significance 
turned out to be more scientific than military. The shells that 
they launched were the first man-made objects to reach the 
stratosphere, initiating space age in the science of ballistics.

Note that Rausenberger does not tell us what “average, 
constant” air density was used in the faulty calculation, or how 
it was determined. Actually, there is a logical problem here, in 
that it is not possible to know how low the air density will become 
along the path of a trajectory without already knowing how high 
the trajectory will go. Nevertheless, the engineers were confident 
of their calculations, so it seems likely that they did not regard 
the air density as a critical parameter when their concern was 
only to find an approximate range. (After all, they had never 
shot anything so high before.)

	 4.	 Use a computer algebra system to write a routine that can 
numerically solve (2) with the piecewise defined C and 
exponentially decaying r given above and can graph the 
resulting trajectory in the xy-plane. (You may need to rewrite 
(2) as a first-order system.) The area A is that of a circle with 
the diameter of the shell. Test your routine on the case r = 0,  
which was solved analytically in Problems 1–3.

	 5.	 (a)	� Suppose that as Krupp engineers we use the results 
of Problem 3 to calculate the maximum height M 
that would have been attained by the test shell had it 
been launched in a vacuum (r = 0), then figure that 
the real test shell might reach about half that height, 
and finally settle on a “constant, average” value for 
r of (r(M/2) + r(0))/2. Plot the resulting trajectory, 
and show that the resulting range is uncannily close to 
that predicted by the Krupp engineers for the October 
14, 1914 test.

		  (b)	� Note that the launch angle for this test was not the 45° 
angle that yields maximum range in a vacuum, but 
a smaller 43° angle. Does this smaller launch angle 
lead to greater range under the constant air density 
assumption that you used in part (a)? To the nearest 
degree, what launch angle yields maximum range 
according to this model?

	 6.	 Now plot the trajectory of the test shell using the proper 
exponentially decaying r. What happens? (In evaluating 

The method of calculating trajectory was therefore changed 
to allow for variation of density along the trajectory. This 
was done by dividing the atmosphere into 3 km bands from 
the earth’s surface upwards. For each band an average air 
density value was determined and applied over that portion of 
the trajectory falling in this band. This step-by-step calculation 
technique was carried out from the muzzle until impact. The 
resultant calculated trajectory, using the drag coefficient 
as determined from small calibre firings, matched closely 
the experimental results from the 21st of October Meppen 
firing.”
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