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When air is moving around a body, the speed of the air
close to the body surface is different from that far away
from the body. The main affecting parameter in this
phenomenon is the geometry of the body. When the free
stream speed (speed of air far away from the body) is
close to the speed of sound (around 340 m/s), the flow is
named transonic flow. In transonic flow, the local speed
of air (speed on the surface of the body) is smaller than
the speed of sound in the subsonic zone, greater than the
speed of sound in the supersonic zone, and equal to the
speed of sound in the sonic zone. For example, the flow
on a thin circular arc airfoil, as shown in Figure 1, is
accelerated near the leading edge of the airfoil until it
reaches the speed of sound (sonic line). The flow contin-
ues to accelerate to supersonic speeds on the middle part
of the airfoil. Then the supersonic zone is terminated by
a shock wave near the trailing edge of the airfoil.

The basic principles of this problem are mass conserva-
tion, energy conservation, and momentum conservation.
Starting from the basic principles and utilizing simplify-
ing assumptions and geometrical transformations, one
can simulate the problem mathematically by the follow-
ing partial differential equation (PDE):

[K − (γ + 1)M 2
∞ φ x]φ x x + φ y y = 0

where K = (1 − M 2
∞)/δ 2/3 is the transonic similarity

parameter, δ is the airfoil thickness ratio, M∞ = v/a is the

Mach number, γ is the specific heat ratio (1.4 for air),
and φ is the perturbation velocity potential (the differen-
tiation of it at any direction gives the change of speed of
air due to the existence of the body at this direction).

This is a second-order nonlinear PDE, and in order
for the problem to be well posted, we need two boundary
conditions:

(1) The far-field boundary condition: The flow far away
from the body does not feel the existence of the
body. Accordingly, the perturbations are zero in all
directions φx = φy = 0 when x or y tends to infinity.

(2) The no-penetration boundary condition: The flow
cannot penetrate the surface of the body.
Accordingly, the perturbation normal to the surface
φn is zero on the surface. For thin airfoils, this condi-
tion can be approximated by φx(x , 0) = F ′(x), where
y = F(x) on the surface of the body.

Defining A = K − (γ + 1)M 2
∞φx, the governing equation

will be an elliptic, parabolic, or hyperbolic PDE accord-
ing to the sign of A. When A < 0 the equation is hyper-
bolic, when A > 0 the equation is elliptic, and when 
A = 0 the equation is parabolic. It happens in this prob-
lem that the sign of A changes at different zones. That is,
the characteristics of the governing equation change
according to the value of the local flow speed φx.

One more simplifying transformation φ =
(Φ + Kx ) / (γ + 1) can be used to put the governing 
equation in a form suitable for computations:

−ΦxΦxx + Φyy = 0.

Numerical Solution
The finite-differencing technique is used to solve the
above problem. Since the governing equation is a mixed-
type PDE, different differencing schemes were chosen at
each zone to pass the information in the right direction
as shown in Figure 2. The resulting algebraic system of
equations is solved iteratively because of the nonlinear
nature of the governing equation.
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Figure 1 Transonic Flow Past an Airfoil
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� Finite-Differencing Scheme For the elliptic
PDE there are no real characteristic lines. Accordingly, a
disturbance at any point will affect the rest of the elliptic
domain. For the hyperbolic PDE there are two real char-
acteristic lines. Accordingly, a disturbance at a point will
affect the part of the domain impeded between the char-
acteristic lines (zone of action). For the parabolic PDE
there is only one real characteristic line. Accordingly, a
disturbance at any point will propagate along that line.

Subsonic Operator
Using central differencing in both the x and the y direction:

−{(Φi + 1, j − Φi − 1, j)/2∆x }[(Φi + 1, j − 2Φi, j + Φi − 1, j)/∆x 2] +
[(Φi, j + 1 − 2Φi, j + Φi, j − 1)/∆y2] = 0.

This is a stable elliptic operator when the first term 
Φc = {(Φi + 1, j − Φi − 1, j)/2∆x } is negative.

Supersonic Operator
Using backward differencing in the x direction and
central differencing in the y direction:

−{(Φi, j − Φi − 2, j)/2∆x }[(Φi, j − 2Φi − 1, j + Φi − 2, j)/∆x 2] +
[(Φi, j + 1 − 2Φi, j + Φi, j − 1)/∆y2] = 0.

This is a stable hyperbolic operator when the first term
Φb = {(Φi, j − Φi − 2, j)/2∆x } is positive.

Sonic Operator
There will be one point on j = constant line on which
neither of the previous operators is locally stable 
(Φb < 0, Φc > 0). Thus a parabolic operator is intro-
duced by setting Φx = 0:

[(Φi, j + 1 − 2Φi, j + Φi, j − 1)/∆y2] = 0.

Shock Wave Operator
At any point on the shock wave surface there is a strong
discontinuity in the flow parameters. The flow near its
inner surface is supersonic (Φb > 0), and on the outer
surface the flow is subsonic (Φc < 0). Accordingly, the
shock wave operator is obtained by adding the subsonic
and the supersonic operators.

� Algebraic System of Equations Two points
should be elaborated here. First, the governing equation
is nonlinear. Usually, that requires iterations to acquire a
solution. Second, the chosen operators use three points at
most (e.g., i, i + 1, i − 1). So the system of equations is
expected to be tridiagonal.

Line Successive Over Relaxation (LSOR)
Let Φ = {Φ1, Φ2, . . . , ΦMax}T be a vector of i = constant
line. The following LSOR formula was used to acceler-
ate the convergence:

Φ i
n + 1 = ω Φ i

n + 1 + (1 − ω)Φ i
n,

where ω is a relaxation parameter. For the present prob-
lem, it is chosen to be over relaxation for the subsonic
point ω = 1.2 and under relaxation for the supersonic
point ω = 0.4, and n is the iteration number for the entire
flow field. Iterations are performed on successive verti-
cal lines and by sweeping the flow field along the flow
direction which is the maximum gradient direction.

Tridiagonal System
For each line i = constant the equation is formed as:

[Ai, j]{Φi} = { fi},

where A is a tridiagonal matrix. This equation is solved
using a tridiagonal solve from the United States Internet
Mathematical Library called SGTSL. This subroutine
requires the three diagonals and the constant vector fi to
be sent in four vectors (c,d,e,b) and returns with the
solution in vector b.

Sample Results
Sample results for a circular arc airfoil with thickness
ratio δ = 0.6 at different values of the free stream Mach
number are presented in this section. Results are presented
in the form of coefficient of pressure Cp ∪ −2Φx against
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Figure 2 Finite-Differencing Scheme
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the distance from the leading edge of the airfoil. As
shown in Figure 3, the supersonic pocket starts to build up
at M = 0.8, and the shock wave discontinuity becomes
very clear at M = 0.84.
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Figure 3 Variation of Pressure Coefficient with Distance from the Airfoil Leading Edge
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