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In the summer of 1940, the Tacoma Narrows suspension
bridge in the state of Washington was completed and
opened to traffic. Almost immediately, observers noticed
that the wind blowing across the roadway would some-
times set up large vertical vibrations in the roadbed. The
bridge became a tourist attraction as people came to
watch and perhaps ride the undulating bridge. Finally, on
November 7, 1940, during a powerful storm, the oscilla-
tions increased beyond any previously observed, and the
bridge was evacuated. Soon the vertical oscillations
became rotational, as observed by looking down the
roadway. The entire span was eventually shaken apart by
the large vibrations, and the bridge collapsed. See [1]
and [2] for interesting and sometimes humorous anec-
dotes associated with the bridge.

The noted engineer Theodore von Karman was asked
to determine the cause of the collapse. He and his coau-
thors [3] claimed that the wind blowing perpendicularly
across the roadway separated into vortices (wind swirls)
alternately above and below the roadbed, therebysetting
up a periodic, vertical force acting on the bridge. It was
this force that caused the oscillations. Others further
hypothesized that the frequency of this forcing function
exactly matched the natural frequency of the bridge, thus
leading to resonance, large oscillations, and destruction,
as described in equation (31), Section 3.8. For almost
fifty years, resonance was blamed as the cause of the
collapse of the bridge, although the von Karman group
denied this, stating that “it is very improbable that reso-
nance with alternating vortices plays an important role in
the oscillations of suspension bridges” [3].

As we can see from equation (31), Section 3.8, reso-
nance is a linear phenomenon. In addition, for resonance
to occur, there must be an exact match between the fre-
quency of the forcing function and the natural frequency
of the bridge. Furthermore, there must be absolutely no
damping in the system. It should not be surprising, then,
that resonance was not the culprit in the collapse.

If resonance did not cause the collapse of the bridge,
what did? Recent research provides an alternative expla-
nation for the collapse of the Tacoma Narrows bridge.
Lazer and McKenna [4] contend that nonlinear effects,
not linear resonance, were the main factors leading to the
large oscillations of the bridge (see [5] for a good review
article). The theory involves partial differential equa-
tions. However, a simplified model leading to a nonlin-
ear ordinary differential equation can be constructed.

The development of the model below is not exactly
the same as that of Lazer and McKenna, but it results in
a similar differential equation. The example is a new
one, and it shows another way that amplitudes of oscilla-
tion can increase.

Consider a single vertical cable of the suspension
bridge. We assume that it acts like a spring but with
different characteristics in tension and compression and
with no damping. When stretched, the cable acts like a
spring with Hooke’s constant, b, while, when
compressed, it acts like a spring with a different Hooke’s
constant, a. We assume that the cable in compression
exerts a smaller force on the roadway than when
stretched the same distance, so that 0 < a < b. Let the
vertical deflection (positive direction downward) of the
slice of the roadbed attached to this cable be denoted by
y(t), where t represents time, and y = 0 represents the
equilibrium position. As the roadbed oscillates under the
influence of an applied vertical force (due to the von
Karman vortices), the cable provides an upward restor-
ing force equal to by when y > 0 and a downward restor-
ing force equal to ay when y < 0. This change in the
Hooke’s law constant at y = 0 provides the nonlinearity
to the differential equation. We are thus led to consider
the differential equation derived from Newton’s second
law of motion (F = ma),

my″ + f(y) = g(t),

where f(y) is the nonlinear function given by

f(y) = � ,

g(t) is the applied force, and m is the mass of the section
of the roadway. Note that the differential equation is
linear on any interval on which y does not change sign.

by, if y ≥ 0
ay, if y < 0
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Now, let us see what a typical solution of this prob-
lem would look like. We will assume that m = 1, b = 4, 
a = 1, and g(t) = sin 4 t. Note that the frequency of the
forcing function is larger than the natural frequencies of
the cable in both tension and compression, so that we do
not expect resonance to occur. We also assign the
following initial values to y: y(0) = 0, y′(0) = α, where 
α > 0, so that the roadbed starts in the equilibrium posi-
tion with downward velocity.

Because of the downward initial velocity and the
positive applied force, y(t) will initially increase and
become positive. Therefore, we first solve

y″ + 4y = sin 4t, y(0) = 0, y′(0) = α.

The solution is the sum of the complementary solution,
yc(t), and the particular solution, yp(t). It is easy to see
that yc(t) = c1 cos 2 t + c2  sin 2 t (see Section 3.3), and 
yp(t) = −1⁄12 sin 4 t (see Section 3.4). Thus,

y(t) = c1 cos 2t + c 2 sin 2t − sin 4 t.

The initial conditions give

y (0) = 0 = c1,

y′(0) = α = 2c2 − ,

so that c 2 = (α + d) /2. Therefore,

y(t) = �α + �sin 2t − sin 4 t

= sin 2 t� �α + � − cos 2 t�
where we have used sin 4t = 2 sin 2t cos 2t. We note that
the first positive value of t for which y(t) is again equal
to zero is t = π/2. At that point, y′(π/2) = −(α + q).

After t = π/2, y becomes negative, so we must now
solve the new problem

y″ + y = sin 4t, y � � = 0, y ′� � = −�α + �.

The solution, found as above, is

y(t) = �α + �cos t − sin 4 t

= cos t��α + � − sin t cos 2t�.

The next positive value of t after t = π/2 at which y(t) =
0 is t = 3π/2, at which point y′(π/2) = α + 2⁄15.

At this point, the solution has gone through one cycle
in the time interval [0, 3π/2]. During this cycle, the
section of the roadway started at the equilibrium with
positive velocity, became positive, came back to the
equilibrium position with negative velocity, became
negative, and finally returned to the equilibrium position
with positive velocity. This pattern continues indefi-
nitely, with each cycle covering 3π/2 time units. The
solution for the next cycle is

y(t) = sin 2 t�− � α + � − cos 2t� on � , 2π�,

y(t) = sin t� −�α + � − cos t cos 2t� on [2π, 3π].

It is instructive to note that the velocity at the begin-
ning of the second cycle is (α + 2⁄15), while, at the begin-
ning of the third cycle, it is (α + 4⁄15). In fact, the
velocity at the beginning of each cycle is 2⁄15 greater than
at the beginning of the previous cycle. It is not surpris-
ing, then, that the amplitude of oscillations will increase
over time, since the amplitude of (one term in) the solu-
tion during any one cycle is directly proportional to the
velocity at the beginning of the cycle.

It must be remembered that the model presented here
is a very simplified one-dimensional model that cannot
take into account all of the intricate interactions of real
bridges. The reader is referred to the account by Lazer
and McKenna [4] for a more complete model. More
recently, McKenna [6] has refined that model to provide
a different viewpoint of the torsional oscillations
observed in the Tacoma bridge.

Research on the behavior of bridges under forces
continues. It is likely that the models will be refined over
time and new insights will be gained from the research.
However, it should be clear at this point that the large
oscillations causing the destruction of the Tacoma
Narrows suspension bridge were not the result of reso-
nance.
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